A SCALAR VOLTERRA DERIVATIVE FOR THE PoU-INTEGRAL

ثبت نشده
چکیده

In [8] and [9] J. Jarník and J.Kurzweil introduced an integration process (called PU-integral) for real valued functions on an interval of n with the use of suitably regularC-partitions of unity, instead of the usual partitions. The PU-integral is nonabsolutely convergent and in dimension one falls properly in between the Lebesgue and the Kurzweil-Henstock integrals. In [4], without assuming any regularity condition for the applied partition of unity, there is studied an integral (called the PoU-integral) for Banach valued functions defined on a σ-finite quasi-Radon measure space. In particular it is proved that it is equivalent to the generalized McShane integral as defined by Fremlin in [6]. Here we continue the investigation of the vector valued PoU-integrable functions started in [4]. In Section 3, using a form of the Henstock Lemma (see Proposition 1), we characterize the Pettis integrable functions which are also PoU-integrable by means of finite pseudopartitions (Theorem 1). In Section 4, using a suitable derivation base satisfying the strong Vitali covering condition, we prove the existence of a scalar form of the Volterra derivative of the

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The analytical solutions for Volterra integro-differential equations within Local fractional operators by Yang-Laplace transform

In this paper, we apply the local fractional Laplace transform method (or Yang-Laplace transform) on Volterra integro-differential equations of the second kind within the local fractional integral operators to obtain the analytical approximate solutions. The iteration procedure is based on local fractional derivative operators. This approach provides us with a convenient way to find a solution ...

متن کامل

Solving Volterra Integral Equations of the Second Kind with Convolution ‎Kernel‎

In this paper, we present an approximate method to solve the solution of the second kind Volterra integral equations. This method is based on a previous scheme, applied by Maleknejad ‎et al., ‎‎[K. Maleknejad ‎and Aghazadeh, Numerical solution of Volterra integral equations of the second kind with convolution kernel by using Taylor-series expansion method, ‎Appl. Math. Comput.‎ (2005)]‎ to gain...

متن کامل

Nonlinear Fuzzy Volterra Integro-differential Equation of N-th Order: Analytic Solution and Existence and Uniqueness of Solution

This paper focuses on the fuzzy Volterra integro-differential equation of nth order of the second-kind with nonlinear fuzzy kernel and initial values. The derived integral equations are solvable, the solutions of which are unique under certain conditions. The existence and uniqueness of the solutions are investigated in a theorem and an upper boundary is found for solutions. Comparison of the e...

متن کامل

A Numerical Scheme for Solving Nonlinear Fractional Volterra Integro-Differential Equations

In this paper, a Bernoulli pseudo-spectral method for solving nonlinear fractional Volterra integro-differential equations is considered. First existence of a unique solution for the problem under study is proved. Then the Caputo fractional derivative and Riemman-Liouville fractional integral properties are employed to derive the new approximate formula for unknown function of the problem....

متن کامل

A computational method for nonlinear mixed Volterra-Fredholm integral equations

In this article the nonlinear mixed Volterra-Fredholm integral equations are investigated by means of the modied three-dimensional block-pulse functions (M3D-BFs). This method converts the nonlinear mixed Volterra-Fredholm integral equations into a nonlinear system of algebraic equations. The illustrative   examples are provided to demonstrate the applicability and simplicity of our   scheme.    

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005